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Constraining the lateral dimensions of uniaxially 
loaded materials increases the calculated 
strength and stiffness: application to muscle 
and bone 
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If a solid body is deformed along one direction, by a uniaxial applied stress for instance, then 
strains will also be induced in perpendicular directions. The negative ratio of the induced 
strain to the applied strain is known as the Poisson ratio. Analysis of the elasticity tensor 
relating stress and strain within a solid shows that if the induced strain is restricted, then a 
greater stress is required to produce the same strain; it appears stiffer. Many biological 
materials with a mechanical function are subject to forces which are primarily uniaxial. This 
mechanism appears to be used to maximize the uniaxial load-bearing properties of some of 
these materials. Muscles are commonly surrounded by strong sheets of connective tissue 
which will constrain the lateral expansion of the muscle as it contracts. This increases the 
stress in the muscle for a given strain, and hence the load it can support. Similarly, cancellous 
bone is normally surrounded by a shell of much stronger compact bone and this effectively 
increases the stiffness of the cancellous bone without the penalty of increasing the mass, as 
would be the case if the same stiffening was produced by increasing the degree of calcifi- 
cation. It also has important implications for the failure of bone, which is largely a function of 
strain rather than stress. 

1. I n t r o d u c t i o n  
If a solid body is deformed along one direction, by 
a longitudinally applied stress for instance, then 
deformations are also induced in the lateral directions 
perpendicular to this. These deformations are related 
to the primary longitudinal deformation by the Poisson 
ratios appropriate for that material. For an isotropic 
solid there is only one Poisson ratio, and that has to 
lie in the range - 1.0 to + 0.5, the latter representing 
an isovolumetric deformation. For materials belong- 
ing to other symmetry groups there are up to six 
Poisson ratios, although these are not all independent 
[1]. Poisson ratios are defined for a body subject 
only to a uniaxial stress, all other directions in the 
body being unconstrained. If, however, the lateral 
dimensions of  the body are somehow constrained and 
the changes in dimension induced in them by the 
uniaxial stress are restricted, then this will affect the 
apparent mechanical properties of  the material per- 
tinent to the applied stress. This effect is examined by 
analysing the general elasticity tensor relating strain to 
stress within the material. The results are applied to 
muscle and bone, where this effect could be important 
to the mechanical function of these tissues. 

Skeletal muscles are made up of muscle fibres held 
together in various configurations by a connective 
tissue framework. These muscles are themselves sur- 
rounded by sheets of connective tissue termed the 
epimysium [2, 3] or, more generally, fascia [4]. Various 
functions have been proposed for the intramuscular 
connective tissue, such as organizing the components 
of the muscle and transmitting forces within the muscle 
[2, 5, 6]. However, the function of  the epimysium, 
which surrounds each muscle, and of  the numerous 
fasciae, which enclose many groups of  muscles, is 
much tess well understood [4]. These fasciae may be 
very substantial; for instance, the fascia lata which 
envelops the thigh [7] and the thoracolumbar fascia 
surrounding the erector spinae muscles, the mechani- 
cal function of  which has not yet been satisfactorily 
explained [8]. The very existence of  such sheets of  
connective tissue surrounding some of  the most 
powerful muscle groups in the body suggests that they 
have a strategic mechanical function. 

Cancellous, or trabecular, bone is found in the 
centre of  the vertebral bodies, the femoral head and 
in many other bones in the vertebrate skeleton. It 
consists of a lattice-like structure of  trabeculae whose 
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geometrical arrangement depends on the geometry 
and load system associated with it. It is always at least 
partially surrounded by a thin shell of compact, or 
cortical, bone which is much stronger and stiffer. 
Isolated cancellous bone is relatively weak. Recent 
testing of cancellous bone has shown that its mechani- 
cal properties when tested in  s i t u  are enhanced con- 
siderably over those when the surrounding cancellous 
bone is removed to make a standard testpiece [9]. 
Cortical bone would be expected to have a similar 
effect. The interplay between the two types of bone 
therefore has important consequences for the mech- 
anical strength of the whole tissue. 

2. T h e o r y  
The strains, eij, in a linearly elastic material corre- 
sponding to stresses, 0-kt, are related by the compliance 
tensor &m, using standard summation nomenclature 
over the subscripts [10]. In its most general form this 
has 36 independent components, but this number is 
often reduced when the symmetry of the material is 
considered. This relationship may be expressed in 
matrix form which reduces the number of subscripts 
needed to describe the components [10] 

ei = s~/a/ (1) 

where ei are the strains produced in the material by the 
applied stresses o-j, and sij are the components of the 
compliance tensor written in matrix form [10]. This 
assumes that the material properties are linear elastic 
and ignores any time-dependence. These assumptions 
may not be true for muscle or connective tissue but 
should not affect the overall conclusions presented 
here providing, as seems reasonable, the stress is a 
monotonically increasing function of strain and the 
elastic limit is not exceeded. 

Choosing the 3-axis along which to apply a uniaxial 
stress, o-3, then all of the other 0"j are zero and the 
resultant strains are 

83 = $33 0-3 (2) 

ei = s,30"3 ( 3 )  

Expressions for the Poisson ratios can then be found 
from their definition using Equations 2 and 3: 

Y3i = - -  8i/~'3 = - -  S i3 /$33  = - -  $3i /$33 ( 4 )  

noting that s~j = si~ [10]. 
If now stresses 0"1 and 0"2, of the same sign as 0"3, are 

applied to restrict the strains induced in these direc- 
tions and represent the effects of  a constraint then to 
achieve the same strain e3 as before a new stress 0"; is 
required: 

23 = $310"1 -[- $320- 2 -]- $330-; ( 5 )  

Z i = S i lo"  1 "~- Si20" 2 ~ -  Si30" ~ (6) 

However, e3 is given by Equation 2, and substituting 
this in Equation 5 gives 

$330" 3 = $310-1 -'~ $320" 2 -{- $330-; (7) 

and therefore 

0-; = 0" 3 - -  ($310-1 -~- $ 3 2 ~ 2 ) / $ 3 3  ( 8 )  

and from Equation 4 

0-/3 ~- 0"3 -I- (V310"1 -~- Y320"2) (9) 

Special cases may be derived from this relationship. If 
the applied constraining stress is cylindrically sym- 
metrical, for instance a hoop or band around a cylin- 
drical body, then 0-1 = 0-2 = o-r, say, and Equation 9 
becomes 

0"; = 0"3 -]- (V31 + Y32)0-r ( 1 0 )  

If  the material itself also has cylindrical symmetry in 
its mechanical properties then the Poisson ratios 
become degenerate and may be written as v31 = 
V32 ~- Y3r, say, and 

0-; = 0-3 q-  2V3r0"r (11) 

For an isotropic material there is only one Poisson 
ratio and a similar expression to Equation 11 is 
obtained with v3r = v. The above analysis is perfectly 
general and is not dependent on the direction of the 
stress 0"3, the important point is that the constraining 
stresses in a perpendicular direction must be of  the 
same sign as the longitudinal stress so as to oppose the 
strains being induced. Only systems in which the state 
of stress is compressive are considered here. 

Applying a lateral constraint to a material subject 
to a uniaxial longitudinal stress will therefore increase 
the stress needed to produce the same longitudinal 
strain compared with when it is unconstrained. The 
increase depends on the Poisson ratios as well as the 
lateral stresses applied. Stiffness is defined as the ratio 
of stress to strain and, as applying a radial constraint 
increases the axial stress, it similarly increases the 
apparent axial stiffness. As the strain is defined to be 
the same in both of the cases derived above, the 
strength and the stiffness are both increased by the 
same fractional amount, f,  where 

f = (0"; - 0"3)/0"3 (12) 

and the appropriate expression can be found by sub- 
stituting for (0-~ - 0-3) from one of Equations 9 to 11. 
A similar strengthening of a material was noted by 
Filon [11] who showed that discrepancies between 
various measurements of the strength and stiffness of 
stone, considered to be isotropic, depended on whether 
the blocks being tested were allowed to expand lat- 
erally as they were compressed. Higher values of 
strength and stiffness were obtained if the lateral 
expansion of the loaded faces of the block was restric- 
ted, and his analysis showed that this was a conse- 
quence of the constraint. 

3. Muscle 
3.1. Fascia 
The so-called deep fasciae surrounding many muscles 
are sheets of connective tissue composed chiefly of 
collagen fibres arranged with a high degree of regu- 
larity; the fibres in one layer usually being at an angle 
to those in the next layer [4]. Collagen is very strong 
in tension, although weak in compression or flexion, 
and when stretched provides a restoring force to oppose 
the applied stress [t2]. The organization of collagen 
fibres in a tissue largely determines its extensibility; for 
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instance, the ligamentum flavum of the spine is much 
more extensible than the posterior longitudinal liga- 
ment and has a much less ordered arrangement of  
collagen fibres in the unstretched position, the fibres 
become aligned as the tissue is stretched [13, 14]. The 
collagen fibres in the annulus fibrosus of the inter- 
vertebral disc are arranged in layers, called lamellae, 
and the fibre direction in adjacent lamellae alternates 
between + 65 ° and - 6 5  ° to the spinal axis [15]. This 
structure enables the intervertebral disc to function as 
a pressure vessel in which internal pressure in the 
nucleus pulposus is resisted by tension in the annulus 
fibrosus [16]. A comparable structure has been demon- 
strated in the thoracolumbar fascia of  the human 
spine, with fibre angles of _+ 60 ° to the spinal axis [8]. 
A similar mechanism may therefore apply to the 
epimysium and fascia where, instead of  a pressure, the 
radial strain generated by the contraction of a muscle 
will tend to stretch the surrounding epimysium and 
fascia. The restoring force generated in the connective 
tissue will then apply a radially directed stress to the 
muscle. 

The thoracolumbar fascia is anchored at its lateral 
and medial margins in such a way that the angle of 
_+ 600 between the collagen fibres and the longitudinal 
axis of the erector spinae muscles does not change 
much during flexion of  the spine, being + 50 ° in the 
fully flexed spine [8]. It can be shown that the fibre 
angle has to be > 54.7 ° for the fibres to be able to 
apply any restraint to the lateral expansion [16, 17]. In 
this case the fascia is capable of  affecting the apparent 
muscle strength and stiffness throughout a significant 
part of the range of movement. This need not be the 
case for other fasciae. If the fascia or epimysium is 
attached to the muscle in a similar way to that which 
has been described for the perimysium [18], then the 
fibre angle wilt change considerably over the range 
of contraction of the muscle and may only have a 
strengthening effect over the last stages. 

3.2. I sovo lume t r i c  c o n t r a c t i o n  
Many skeletal muscles act directly between two points 
of attachment and consist of a large number of muscle 
fibres running parallel to their length, each of  which 
will be rotated through some arbitrary angle with 
respect to those surrounding it. Muscles may therefore 
be considered to have cylindrical symmetry about an 
axis defined along the muscle between the points of 
attachment so Equation 11 is the relevant one to use 
in this case. Because muscle is isovolumetric [19], a 
lower bound on the value of v3r may be found by 
considering the contraction of an unconstrained cylin- 
drical muscle from an initial length lo and radius r0 to 
a new length l~ and radius q .  Then 

(q / to ) :  = /o//1 (13) 

From the definition of engineering strain 

Ii = 1o(1 + e3) and r~ = ro(1 + e~) (14) 

and Equation 13 then becomes 

(1 + = 1/(1 + (15) 
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Figure 1 Variation of the Poisson ratio, v3r, with compressive strain, 
~3, for an isovotumetric contraction of a cylindrically symmetric 
material, such as muscle, to half  its original length. 

and hence 

/~r = (1 - t - 8 3 )  -1/2 - 1 ( 1 6 )  

Combining Equation 16 with Equation 4 then yields 
the following expression for the Poisson ratio: 

V3r = - - [ ( 1  -F 83) - 1 / 2 -  1]/~ 3 (17) 

This function tends to a minimum value of  0.5 as e3 
tends to zero and is shown in Fig. 1 for values of  
compressive strain up to 0.5, i.e. e~ 3 = - 0 . 5 ,  the 
muscle contracting to half its original length. This 
implies, from Equation 11, that the longitudinal stress 
is increased by at least the amount  of  the radial stress 
applied. 

3.3. State of stress and its magnitude 
It is important to note that both the longitudinal stress 
and strain in the muscle, caused by the muscle con- 
tracting, are compressive and therefore take a negative 
sign. Muscle is unusual as a material, since stresses are 
generated internally whereas mechanical properties 
are generally related to stresses applied externally. 
Therefore, although any external load exerts a ten- 
sile force on the muscle and a muscle is commonly 
described as being "in tension", the actual internal 
state of stress must be considered to be compressive so 
as to oppose the external load and contract the muscle. 
If this were not so and the muscle was in a state of 
tensile stress, this would act in co-operation with the 
external load and the muscle would extend catastrophi- 
cally. The radial stress generated by stretching the 
fascia, being an externally applied compressive stress, 
also takes a negative sign. 

An estimate of the order of magnitude of the 
radial constraining stress, ~r, generated by a fascia 
surrounding a muscle may be found by considering, 
for example, the thoracolumbar fascia of the spine. 
This fascia forms a cylindrical sheath surrounding the 
erector spinae muscles. If it functions in a similar way 
to a pressure vessel, the circumferential stress, ao, can 
be related to the internal pressure or, in this case, 
radial stress, at. Adapting the standard formula for 
such a vessel [20] then gives 

~r = cr~t/r (18) 



where t is the thickness of  the fascia and r the radius 
of  the cylinder that it forms. The thickness of  the 
thoracolumbar fascia in a human is estimated to be 
about 1 mm and the radius has been measured from 
magnetic resonance images to be approximately 
50 mm [21]. An estimate of  the maximum safe working 
stress that the fascia could sustain may be obtained by 
comparison with the surface zone of articular cartilage 
in which the safe maximum stress is calculated to be of 
the order of  10 MPa and which contains an internal 
pressure of about 300kPa [22]. Putting ac = 107 Pa, 
t = 10 .3 m and r = 0.05m in Equation 18 suggests 
that o-~ would be about 200 kPa. The actual working 
stress in the surface zone of  articular cartilage has 
recently been calculated to be about 1 MPa [23] and 
using this value for o'c in Equaton 18 results in a radial 
stress of about 20 kPa. The radial stress calculated 
above cannot be equated with the intracompartmental 
pressure found in various muscle compartments [24]. 
This pressure is an isotropic fluid pressure and is not 
the same as the stress in the solid phase of  the material 
generated by expansion against the constraint of  the 
fascia. The solid phase will also prevent the occlusion 
of blood vessels that would otherwise occur if the 
muscle was simply pressurized. 

Estimates of the maximum active strength of muscle 
vary considerably, but typical values seem to be about 
200 to 400 kPa, measured in isolated skeletal muscles 
from animals [25] and humans [26]. Substituting these 
values for o- 3 yields a range of values for the fractional 
increase in strength and stiffness, f (from Equations 
I I and 12), of  between 0.5 and 1.0 using the higher 
value from above for the stress in the fascia and taking 
the Poisson ratio to be 0.5. If the stress in the fascia is 
lower, about 1 MPa, then the fractional increase is 
between 0.05 and 0.1. Constraining muscular expan- 
sion by surrounding it with a strong connective tissue 
fascia may therefore increase the strength and stiffness 
of  the muscle by about  5 to 10%, but possibly by as 
much as 100%. The volume of  connective tissue is 
small relative to that of  muscle, about 4% in the above 
example. This would suggest that the energy needed to 
stretch the fascia is only a small fraction of  that used 
to move the external load. However, because of the 
relatively high stiffness of connective tissue, the 
stresses produced could have a significant effect on the 
muscle stress. Connective tissues are also viscoelastic, 
which means that their stiffness increases as the rate of 
straining increases. Thus, rapid contraction of  a 
muscle would be expected to generate a greater 
strengthening and stiffening effect by the fascia. 
Increasing the stiffness of  a muscle will also increase 
the bending stiffness, and this may be important for 
increasing the dynamic stability of  the flexible spine 
[27]. 

Muscle strengths measured [28] or calculated [29] 
in situ in the human body are reported to be in the 
range 400 to 1000kPa, a curious discrepancy from 
those measured in vitro. Removal of  the fascia lata 
from the thigh has been reported to result in muscle 
herniation in 50% of patients after 3.5 years and a 
reduced strength in hip flexion and knee extension of 
about 7% compared with the non-operated leg [30]. A 

hypothesis that explains these observations is pro- 
vided by the analysis presented here, which suggests 
that the surrounding connnective tissue may signifi- 
cantly increase muscle strength. 

4. Bone 
Cancellous bone has a measured average stiffness of 
about 0.3 GPa and a density of about 240 kgm -3 and 
is usually found in the skeleton largely surrounded by 
compact bone, which has a stiffness of about 20 GPa 
and a density of about 2000 kg m 3. From this it can 
be seen that using cancellous bone rather than com- 
pact bone, where mechanical considerations allow, 
results in a considerable saving in mass. Forces in the 
long bones of  the skeleton and in the spine are pre- 
dominantly uniaxial, arising from body weight and 
muscular forces which commonly have a large com- 
ponent along the bone to which they are attached. The 
preceding analysis shows that in this case the sur- 
rounding of  cancellous bone with a shell of  compact 
bone can enhance the mechanical properties of  the 
cancellous bone by increasing its apparent stiffness. 
The mechanical failure of bone in in vitro tests is 
strongly correlated with the strain applied rather than 
the stress [31, 32] and increasing the stiffness would 
therefore be expected to result in a similar increase in 
strength. 

Recent mechanical tests on cancellous bone from 
the upper tibial epiphysis from human knees have 
demonstrated just such an effect [9]. Compressive tests 
to 0.8% strain were performed in situ on a slice 
of cancellous bone larger than the ends of the com- 
pression platens. A cylindrical plug was subsequently 
machined out from the same place as tested in situ, and 
used as the standard, and finally this plug was encased 
by a sliding-fit steel jacket to constrain lateral expan- 
sion. It was found that the in situ test and the con- 
strained test produced values for the stiffness at 0.8% 
strain of 19 and 22% more, respectively, than the 
standard testpiece. 

This is a significant stiffening of the cancellous 
bone, and shows that care must be exercised when 
extrapolating results from isolated mechanical tests to 
the in vivo structure. A similar stiffening effect might 
be expected from the shell of cortical bone which 
surrounds most cancellous bone, especially as loads 
are generally distributed over the whole cross-section 
and are not simply a localized load as in the above 
tests. It also confirms that the cortical bone has a 
strategic function in strengthening the cancellous bone 
and does not simply have secondary functions, such as 
a containment structure for the bone marrow, for 
instance, as suggested for vertebrae on the basis of  
finite-element modelling [33]. 

5. Conclusions 
The following conclusions can be drawn. 

1. It is shown that constraining the lateral expan- 
sion, or the Poisson ratio effects, in a body subject to 
a uniaxiat stress increases the apparent strength and 
stiffness of  the material. 

2. Applied to muscle, this leads to the hypothesis 
that the tough sheets of  connective tissue commonly 
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surrounding muscles wilt increase the force that a 
muscle can apply for a given strain and, as a conse- 
quence, increase its apparent stiffness. 

3. Applied to bone, it explains recent results show- 
ing that isolated cancellous bone appears weaker and 
less stiff than when it is tested surrounded by other 
bone. On the basis of the theory, this result is extra- 
polated to suggest a similar effect from surrounding 
cancellous bone with compact bone. Using these two 
types of bone together would therefore be expected to 
produce a material that is light and strong. 
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